An NMR Investigation of the Reactions of Secondary Organoarsines with Symmetric Diarsines and Diphosphines

V. K. GUPTA, L. K. KRANNICH and C. L. WATKINS*

Department of Chemistry, University of Alabama at Birmingham, Birmingham, Ala. 35294, U.S.A. (Received June 9, 1987)

Our recent investigations of the reactivity of primary organoarsines, $RAsH₂$, with $Me₂ AsNMe₂$ $[1]$, Me₂AsAsMe₂ [2], and cyclic-(MeAs)₅ [3] indicate that several facile exchange reactions influence the overall reaction rates and the resulting equilibrium product distributions. This information has been used to design new, efficient, and convenient routes to the high yield syntheses of such compounds as cyclic polyarsines [4].

We were therefore interested in examining the reactions of secondary organoarsines with the corresponding aminoarsines and diarsines. We have reported a NMR study of the reaction of $Me₂ AsH$ with $Me₂ AsNMe₂$ [5]. From this study, a new synthetic route to the symmetric diarsine, $Me₂ As AsMe₂$, was devised. In this investigation, we noted that $Me₂ AsH$ reacts with $Et₂ AsAsEt₂$ to give the unsymmetric diarsine, $Me₂ As AsEt₂$.

There are only a few reports of reactions involving the formation of unsymmetric diarsines [6-91. Therefore, we have undertaken a systematic study of the $R_2AsH/R'_2AsAsR'_2$ system to determine the mechanism of the overall reaction and to characterize and establish the relative importance of any competing reactions. Here, we report a NMR study of the reactions of R₂AsH with R'₂AsAsR'₂ (R = Me, R' = Et; $R = Et$, $R' = Me$; $R = Me$, $R' = Ph$; $R = Ph$, $R' =$ Me) and of $Me₂AsH$ with $Et₂PPEt₂$. The reactions of $Me₂AsH$ with $(CF₃)₂PP(CF₃)₂$ and of Me₂PH with $(CF_3)_2$ AsAs $(CF_3)_2$ are known to yield mixed phosphinoarsines [7]. The mixed phosphinoarsines have also been obtained by exchange reactions of the corresponding symmetric tetraorganodiarsines and tetraorganodiphosphines [10, 11].

Experimental

Standard high vacuum line techniques and a Vacuum Atmospheres Model-43-Dri Lab equipped with a Model HE-493 Dri-Train were used for the storing and handling of all compounds. $Et₂PH$ was purchased from Strem Chemicals Inc. $Me₂ AsAsMe₂$

(60 'C/25 torr) [5], EtzAsAsEt, (185 "C) [5], PhZ- $\frac{1}{2}$ (melting point (m.p.) 120-130 $\frac{9}{2}$, [12] Me₂AsH (36 °C) [13], Et₂AsH (101-107 °C) [14], Ph₂AsH (160 °C/10 torr) [15], and Et₂PPEt₂ (221--222 °C) [16] were synthesized by standard methods. The NMR tubes were carefully washed in a non-acid media to prevent any possible acid-catalysed exchange.

 ${}^{1}H$, ${}^{13}C$, and ${}^{31}P$ NMR spectra were recorded on a Nicolet 300 MHz multinuclear FT NMR spectrometer operating at 300.1, 75.4, and 121.5 MHz, respective- μ . The μ and μ and μ chemical shifts were measured with respect to tetramethylsilane as an internal reference. The 31P chemical shifts were measured with respect to 85% H₃PO₄ as external reference.

The following reactions of secondary arsines or phosphines with equimolar amounts of symmetric diarsines or diphosphines were studied over the temperature range of -80 to 24 °C as a function of time using ${}^{1}H$, ${}^{13}C$, and ${}^{31}P$ NMR spectroscopy: (1) $Me₂ AsH with Et₂ AsAsEt₂ (0.50 mmol); (2) Et₂ AsH$ with $Me₂ AsAsMe₂$ (0.50 mmol); (3) $Ph₂ AsH$ with $Me₂ AsAsMe₂$ (0.50 mmol); (4) $Me₂ AsH$ with $Ph₂$ -AsAsPh₂ (0.25 mmol); (5) Me₂AsH with Et_2 PPEt₂ (0.50 mmol), and (6) $Et₂PH$ with Me₂AsAsMe₂ (0.50) mmol). Reactions (1) - (6) were carried out in toluene-d₈ solution as reported previously $[1, 2]$. For the reaction of Et_2 PPE t_2 with Me₂AsAsMe₂ equimolar amounts of the reactants (0.50 mmol) were dissolved in enough toluene-d₈ at room temperature to give a total solution volume of 4.0 ml. The progress of the reaction was monitored by recording the $31P$ NMR spectra at selected time intervals until equilibrium was noted.

Results and **Discussion**

The NMR spectra of the Me₂AsH/Et₂AsAsEt₂ system at -80 °C consisted of low intensity peaks assignable to $Me₂ AsAsEt₂$ and $Et₂ AsH$ and high intensity resonances attributed to the reactants. With increasing temperature, the intensities of the product peaks increased with a concomitant decrease in the intensities of the reactants peaks. At -40 °C, a peak assignable to $Me₂ AsAsMe₂$ was observed. After 2 days at 24 $^{\circ}$ C, the system achieved equilibrium. The ¹H NMR intensity data indicated the presence of 31% $Me₂ AsAsEt₂, 5% Me₂ AsAsMe₂, 14% Et₂ AsAsEt₂,$ 12% Me₂AsH, and 38% Et₂AsH.

The reaction of Et_2AsH with Me_2AsMe_2 at -80 "C consisted of very low intensity peaks assignable to $Me₂ AsAsEt₂$ and $Me₂ AsH$ and high intensity resonances corresponding to the reactants. After raising the temperature to -40 °C, the intensities of the product peaks increased and new peaks assignable

^{*}Author to whom correspondence should be addressed.

 Γ t, Λ , Γ ^t, appeared. After 3 days at 24 \degree C, the μ_2 AsAs μ_2 appeared. After J days at 24° C, the m_{H} mixture containing 30% . Me, AsAsEt, 16% , Me, At $\frac{10}{6}$ Containing $\frac{30}{6}$ Me $\frac{25}{32}$ Ms AsH, and 13% AsAsMe₂, 4% Et₂AsAsEt₂, 37% Me₂AsH, and 13%
Et₂AsH.

The NMR spectra of the $Ph₂AsH/Me₂AsAsMe₂$ system indicated no reaction at -80 °C. Very low intensity peaks assignable to $Me₂ AsAsPh₂$ and Me₂AsH were noted at -40 °C. At -10 °C, new resonances were also observed due to $Ph₂AsAsPh₂$. The reaction was then followed at 24 \degree C as a function of time. The 'H NMR intensity data at equilibrium (after 7 days) indicated the presence of 32% Me₂- μ , A_{21} in A_{31} in the reaction mixture. The reaction mixture mixture.

 $Ph₂ AsH$, and 31% $Me₂ AsH$ in the reaction mixture.
These results indicate that a change in the substituent (Me, Et, and Ph) bonded to arsenic in the above reaction systems does not affect the final eve reaction systems does not affect the rinal mitoriam distribution of species in the reaction mixture. However, the nature of the substituent does affect the overall rate of reaction. These findings are consistent with our previous observations on the Me,AsNRz/Et,AsAsEt, and EtaAsNR,/Me,AsAsMe, s_2 stems $\frac{1}{6}$.

 T The reaction of M_2 ASH with m_2 ASASH₁₂ could only be studied at low concentration (0.25 mmol of each reactants in 4.0 ml solution) and at -10° C and above due to the low solubility of $Ph₂AsAsPh₂$. The NMR spectra at -10 °C initially showed, in addition to reactant peaks, very low intensity peaks assignable to actually peaks, very now intensity peaks assignable $f(x) = \frac{1}{2} \arctan \frac{1}{2}$ to we can allow a new resonance due to M_{\odot} As M_{\odot} tion progressed, a new resonance due to $Me₂ AsAsMe₂$ was noted. The ¹H NMR equilibrium intensity data (5 days, 24 °C) indicated the presence of 23% Me₂as as $\frac{24}{16}$ material in presence of $\frac{23}{16}$ Me₂^s $\frac{M_{31}}{M_{22}}$, $\frac{0}{\pi}$ $\frac{M_{2}M_{3}M_{3}M_{2}}{M_{21}}$, $\frac{10}{\pi}$ $\frac{10}{\pi}$ $\frac{10}{\pi}$ $\frac{10}{\pi}$. $Me₂ AsH$, and 27% $Ph₂ AsH$ in the reaction mixture. These results suggest that R_2AsH reacts with R'_2 AsAs R'_2 to yield an unsymmetric diarsine, R_2 -

AsAsR'₂, and a secondary arise, R'₂AsH (eqn. (1)).
B. A.H. B'₄ A.A.B'₂
$$
\rightarrow
$$
 B'₄ A.H. B₄ \rightarrow B'₄ \rightarrow B'₄ \rightarrow B'₄ \rightarrow B'₄ \rightarrow B'₄

$$
R_2AsH + R'_2AsAsR'_2 \Longleftrightarrow R'_2AsH + R_2AsAsR'_2 \quad (1)
$$

 T_{t} is uncertaintied then the then undergo function \mathbf{r} α ansymmetric diarship their can undergo further reactions involving R_2As - and R'_2As - moiety exchange (eqns. (2) and (3)).

 $2R_2AsAsR'_2 \rightleftharpoons R_2AsAsR_2 + R'_2AsAsR'_2$ (2)

$$
R_2AsH + R_2AsAsR'_2 \Longleftrightarrow R_2AsAsR_2 + R'_2AsH \qquad (3)
$$

 \overline{S} symmetrization process represented by eqn. (2) ϵ symmetrization process represented by eqn. (z) could not be studied directly due to the inability to isolate $R_2AsAsR'_2$. Thus, we have characterized this process by studying the $R_2AsAsR_2/R'_2AsAsR'_2$ s_{cross} by studying the N_2 ASAS N_2/N_2 ASAS N_2 tems $(x - w_c, x - c_d)$ and $f(x)$ [0, 17]. The readtion represented by eqn. (3) can be characterized by studying the corresponding R'_2AsH/R_2AsAsR_2 s_{max} in conceptions s_{max} the r_{max} tem. For example, the possibility of the reaction

 E system was established by independent by independent by independent by independent by independent by independent of E 2 AsAsE t_2 system was established by independent study of the $Et_2AsH/Me_2AsAsMe_2$ system (see above results). Due to the lability of the As-As and As-H bonds

Due to the fability of the $As-As$ and $As-IB$ bonds $[1-3, 5, 6, 17]$, other reactions may also occur in the reaction mixture. For example, R_2AsH can be involved in H- moiety exchange with R'_2 AsH. This exchange process has been established previously by independent study of the reaction of $Me₂AsD$ with $Et₂AsH$ in diethylether-d₁₀ [18].

This work has also been extended to some systems involving phosphorus analogues. The NMR spectra of an equimolar mixture of $Me₂ AsH$ and $Et₂ PPEt₂$ showed no reaction from -80 to -10 °C. At 24 °C, the NMR spectra indicated the formation of Et_2PH and $Me₂ AsPEt₂$. As the reaction progressed, a new peak due to Me₂AsAsMe₂ was observed. A disproportionate increase in the intensities of the $Et₂PH$ peaks in comparison to those of $Me₂ AsPEt₂ was noted.$ After 18 days, the ¹H and ³¹P NMR data indicated an equilibrium with total consumption of $Me₂ AsH$ to give 52% Et₂PH, 9% Et₂PPEt₂, 12% Me₂AsPEt₂, and 27% Me₂AsAsMe₂. $T\%$ Me₂ ASASMe₂.

First results suggest that M_2 AsII reacts with $A_eH + E_t$ DDE_t \longrightarrow Me_t APE_t + E_t DH (4)

$$
Me2 AsH + Et2PPEt2 \implies Me2 AsPEt2 + Et2PH (4)
$$

 $T_{\rm eff}$, $T_{\rm eff}$ is the canonically dependent can react with $T_{\rm eff}$ ϵ phosphiloarshi ϵ , $\mathbf{w}\epsilon_2$ and ϵ_2 , then can react with $Me₂ AsH (eqn. (5))$ and be involved in a self-exchange reaction (eqn. (6)).

$$
Me2 AsH + Me2 AsPEt2 \implies Me2 AsAsMe2 + Et2PH
$$
\n(5)

$$
2\text{Me}_2\text{AsPEt}_2 \Longleftrightarrow \text{Et}_2\text{PPEt}_2 + \text{Me}_2\text{AsAsMe}_2 \tag{6}
$$

The disproportionate formation of EtsPH as com-The disproportionate formation of E_{2} FH as compared to that of $Me₂ AsPEt₂$ in the $Me₂ AsH/Et₂ PPEt₂$ system can be attributed to the occurrence of competitive reactions of Me₂AsH with Et_2 PPEt₂ and $Me₂ AsPEt₂$. Reaction (5) should be favored over (4) since the P-As bond strength appears to be lower than the P-P bond strength $[10, 11]$. Reactions represented by eqns. (5) and (6) have been characterized by studying the $Et_2PH/Me_2AsAsMe_2$ and Et_2 PPE t_2 /Me₂AsAsMe₂ equilibrium systems (see discussion below) since $Me₂ AsPEt₂$ cannot be isolated from solution [10, 11]. T_{M} T_{M} T_{M} T_{M} T_{M} T_{M}

THE INDICATE SPECIES OF THE E_2 FIT/NIE₂ ASASINE₂ system indicated no reaction from -80 to -10 °C. The reaction was then followed at 24 °C as a function of time. A slow reaction occurred to yield M_{eff} and M_{eff} and M_{eff} and M_{eff} and M_{eff} and M_{eff} 2 Asr E_1 and M e₂AsH. The ^prame 2 ^s MMR spectra (21 h) showed the presence of 6% Me₂AsPEt₂, 6% Me₂AsH, 44% Et₂PH, and 44% Me₂AsAsMe₂ at equilibrium. $\frac{31}{2}$

THE $\frac{1}{2}$ NWIN spectra of an equilibrial mixture of Et_2 PPE t_2 with Me_2 As AsMe₂ at 24 °C in toluene-d₈ indicated a very slow exchange reaction to give an

equilibrium mixture (13 days) of $Me₂ AsPEt₂$, $Et₂PPEt₂$, and $Me₂ AsAsMe₂$. An equilibrium constant of 0.22 was obtained from $K = [Me₂ AsPEt₂]²/$ $([Me₄As₂][Et₄P₂])$. This value is consistent with those reported for the Ph_2PPPh_2/Ph_2AsASH_2 (0.37) [10] and $Me₂PPMe₂/Me₂AsAsMe₂$ (0.26) systems $[11]$.

The results of our present study indicate that unsymmetric diarsines and phosphinoarsines are formed in the reactions of secondary arsines with symmetric diarsines and diphosphines, respectively. The overall reaction sequences are complex, since additional exchange reactions involving the R_2As- , R'_2 As-, and R'_2 P- species can be present. These competing reactions influence the rate of formation and relative yields of unsymmetric diarsines and phosphinoarsines. The fact that $Me₂ AsH$ readily reacts with Et_2AsAEt_2 at -80 °C, while no reaction occurs upto -10 °C with Et₂PPEt₂ suggests that the As-As bond is more labile toward reaction with the As-H bond than with the P-P bond. The >AsH/>AsAs< and \geq AsH/ \geq PP \leq systems are being studied further to determine the electronic and steric effects that various substituents have on the course of the reaction sequence.

Supplementary Material

¹H, ¹³C, and ³¹P NMR spectral data [δ , ppm] in toluene-d₈ solution at 24 $^{\circ}$ C were independently determined on synthesized compounds that were identified in the reaction mixtures. These data are available from the authors on request.

Acknowledgement

This research was supported in part by a UAB Faculty Research Grant (C.L.W.).

References

- 1 V. K. Gupta, L. K. Krannich and C. L. Watkins, *Inorg. Chim. Acta, 126, 173* (1987).
- *2* V. K. Gupta, L. K. Krannich and C. L. Watkins, Inorg. *Chim. Acta, 132, 163* (19871.
- *3* V. K. Gupta, L. K. Krannich and C. L. Watkins, *Inorg. Chem., 26, 1638* (1987).
- *4* V. K. Gupta, L. K. Krannich and C. L. Watkins, *Synth. 5* V. K. Gupta, L. K. Krannich and C. L. Watkins, Inorg. *React. Znorg. Met-Org. Chem., 17, 501* (1987).
- *6* V. K. Guota. L. K. Krannich and C. L. Watkins, *Poly-Chem., 25, 2553* (1986).
- *I* R. G. Cave11 and R. C. Dobbie. J. Chem. Sot. *A.* 1406 *hedron, 6, 1229 (1987).*
- *8* R. L. Grant and A. B. Burg,J. *Am. Chem Sot., 84, 1834* (1968).
- *9* K. Issleib and K. Krech, *Chem. Ber., 98,* 1093 (1965). *(1962).*
- 10 A. Belforte, F. Calderazzo, A. Morvillo, G. Pelizzi and
- 11 A. J. Ashe, III and E. G. Ludwig, Jr., *J. Organomet.* D. Vitali, *Inorg. Chem., 23, 1504* (1984).
- 2 L. K. Krannich and H. H. Sisler. *Inore Chem... 8*, 1032 Chem., 303. 197 (1986).
- 13 W. M. Dehn and B. B. Wilcox, *Am. Chem J., 35,* 1 (1969).
- (1906).
- 14 A. Tzschach and W. Lange, Z. *Anorg. Allg. Chem., 326, 280 (1960).*
- 15 E. Wiberg and K. Modritzer, Z. *Naturforsch. Anorg.* Chem., 126, 127 (1957).
- 16 K. Issleib and W. Seidel, *Chem. Ber., 92, 2681* (1959). 11 V. K. Gupta, L. K. Krannich and C. L. Watkins, *J.*
- 18 W. R. Cullen and W. R. Leeder, *Can. J. Chem., 48, 3757 Organomet. Chem.,* submitted for publication.
- (1970).