An NMR Investigation of the Reactions of Secondary Organoarsines with Symmetric Diarsines and Diphosphines

V. K. GUPTA, L. K. KRANNICH and C. L. WATKINS*

Department of Chemistry, University of Alabama at Birmingham, Birmingham, Ala. 35294, U.S.A. (Received June 9, 1987)

Our recent investigations of the reactivity of primary organoarsines, $RAsH_2$, with Me_2AsNMe_2 [1], $Me_2AsAsMe_2$ [2], and cyclic- $(MeAs)_5$ [3] indicate that several facile exchange reactions influence the overall reaction rates and the resulting equilibrium product distributions. This information has been used to design new, efficient, and convenient routes to the high yield syntheses of such compounds as cyclic polyarsines [4].

We were therefore interested in examining the reactions of secondary organoarsines with the corresponding aminoarsines and diarsines. We have reported a NMR study of the reaction of Me₂AsH with Me₂AsNMe₂ [5]. From this study, a new synthetic route to the symmetric diarsine, Me₂AsAsMe₂, was devised. In this investigation, we noted that Me₂AsH reacts with Et₂AsAsEt₂ to give the unsymmetric diarsine, Me₂AsAsEt₂.

There are only a few reports of reactions involving the formation of unsymmetric diarsines [6-9]. Therefore, we have undertaken a systematic study of the $R_2AsH/R'_2AsAsR'_2$ system to determine the mechanism of the overall reaction and to characterize and establish the relative importance of any competing reactions. Here, we report a NMR study of the reactions of R_2AsH with $R'_2AsAsR'_2$ (R = Me, R' = Et; R = Et, R' = Me; R = Me, R' = Ph; R = Ph, R' =Me) and of Me₂AsH with Et₂PPEt₂. The reactions of Me_2AsH with $(CF_3)_2PP(CF_3)_2$ and of Me_2PH with $(CF_3)_2$ AsAs $(CF_3)_2$ are known to yield mixed phosphinoarsines [7]. The mixed phosphinoarsines have also been obtained by exchange reactions of the corresponding symmetric tetraorganodiarsines and tetraorganodiphosphines [10, 11].

Experimental

Standard high vacuum line techniques and a Vacuum Atmospheres Model-43-Dri Lab equipped with a Model HE-493 Dri-Train were used for the storing and handling of all compounds. Et₂PH was purchased from Strem Chemicals Inc. $Me_2AsAsMe_2$

(60 °C/25 torr) [5], Et₂AsAsEt₂ (185 °C) [5], Ph₂-AsAsPh₂ (melting point (m.p.) 129–130 °C) [12], Me₂AsH (36 °C) [13], Et₂AsH (101–107 °C) [14], Ph₂AsH (160 °C/10 torr) [15], and Et₂PPEt₂ (221–222 °C) [16] were synthesized by standard methods. The NMR tubes were carefully washed in a non-acid media to prevent any possible acid-catalysed exchange.

¹H, ¹³C, and ³¹P NMR spectra were recorded on a Nicolet 300 MHz multinuclear FT NMR spectrometer operating at 300.1, 75.4, and 121.5 MHz, respectively. The ¹H and ¹³C chemical shifts were measured with respect to tetramethylsilane as an internal reference. The ³¹P chemical shifts were measured with respect to 85% H₃PO₄ as external reference.

The following reactions of secondary arsines or phosphines with equimolar amounts of symmetric diarsines or diphosphines were studied over the temperature range of -80 to 24 °C as a function of time using ¹H, ¹³C, and ³¹P NMR spectroscopy: (1) Me₂AsH with Et₂AsAsEt₂ (0.50 mmol); (2) Et₂AsH with Me₂AsAsMe₂ (0.50 mmol); (3) Ph₂AsH with Me₂AsAsMe₂ (0.50 mmol); (4) Me₂AsH with Ph₂-AsAsPh₂ (0.25 mmol); (5) Me₂AsH with Et₂PPEt₂ (0.50 mmol), and (6) Et₂PH with Me₂AsAsMe₂ (0.50 mmol). Reactions (1)-(6) were carried out in toluene- d_8 solution as reported previously [1, 2]. For the reaction of Et₂PPEt₂ with Me₂AsAsMe₂ equimolar amounts of the reactants (0.50 mmol) were dissolved in enough toluene-d₈ at room temperature to give a total solution volume of 4.0 ml. The progress of the reaction was monitored by recording the ³¹P NMR spectra at selected time intervals until equilibrium was noted.

Results and Discussion

The NMR spectra of the Me₂AsH/Et₂AsAsEt₂ system at -80 °C consisted of low intensity peaks assignable to Me₂AsAsEt₂ and Et₂AsH and high intensity resonances attributed to the reactants. With increasing temperature, the intensities of the product peaks increased with a concomitant decrease in the intensities of the reactants peaks. At -40 °C, a peak assignable to Me₂AsAsMe₂ was observed. After 2 days at 24 °C, the system achieved equilibrium. The ¹H NMR intensity data indicated the presence of 31% Me₂AsAsEt₂, 5% Me₂AsAsMe₂, 14% Et₂AsAsEt₂, 12% Me₂AsH, and 38% Et₂AsH.

The reaction of Et_2AsH with $Me_2AsAsMe_2$ at -80°C consisted of very low intensity peaks assignable to $Me_2AsAsEt_2$ and Me_2AsH and high intensity resonances corresponding to the reactants. After raising the temperature to -40 °C, the intensities of the product peaks increased and new peaks assignable

^{*}Author to whom correspondence should be addressed.

to $Et_2AsAsEt_2$ appeared. After 3 days at 24 °C, the ¹H NMR intensity data indicated an equilibrium mixture containing 30% Me₂AsAsEt₂, 16% Me₂-AsAsMe₂, 4% Et₂AsAsEt₂, 37% Me₂AsH, and 13% Et₂AsH.

The NMR spectra of the Ph₂AsH/Me₂AsAsMe₂ system indicated no reaction at -80 °C. Very low intensity peaks assignable to Me₂AsAsPh₂ and Me₂AsH were noted at -40 °C. At -10 °C, new resonances were also observed due to Ph₂AsAsPh₂. The reaction was then followed at 24 °C as a function of time. The ¹H NMR intensity data at equilibrium (after 7 days) indicated the presence of 32% Me₂-AsAsPh₂, 19% Me₂AsAsMe₂, 6% Ph₂AsAsPh₂, 12% Ph₂AsH, and 31% Me₂AsH in the reaction mixture.

These results indicate that a change in the substituent (Me, Et, and Ph) bonded to arsenic in the above reaction systems does not affect the final equilibrium distribution of species in the reaction mixture. However, the nature of the substituent does affect the overall rate of reaction. These findings are consistent with our previous observations on the $Me_2AsNR_2/Et_2AsAsEt_2$ and $Et_2AsNR_2/Me_2AsAsMe_2$ systems [6].

The reaction of Me_2AsH with $Ph_2AsAsPh_2$ could only be studied at low concentration (0.25 mmol of each reactants in 4.0 ml solution) and at -10 °C and above due to the low solubility of $Ph_2AsAsPh_2$. The NMR spectra at -10 °C initially showed, in addition to reactant peaks, very low intensity peaks assignable to $Me_2AsAsPh_2$ and Ph_2AsH . The reaction was then followed at 24 °C as a function of time. As the reaction progressed, a new resonance due to $Me_2AsAsMe_2$ was noted. The ¹H NMR equilibrium intensity data (5 days, 24 °C) indicated the presence of 23% Me_2 - $AsAsPh_2$, 8% $Me_2AsAsMe_2$, 16% $Ph_2AsAsPh_2$, 26% Me_2AsH , and 27% Ph_2AsH in the reaction mixture. These results suggest that R_2AsH reacts with

 $R'_{2}AsAsR'_{2}$ to yield an unsymmetric diarsine, R_{2} -AsAs R'_{2} , and a secondary arsine, $R'_{2}AsH$ (eqn. (1)).

$$R_2AsH + R'_2AsAsR'_2 \rightleftharpoons R'_2AsH + R_2AsAsR'_2 \quad (1)$$

The unsymmetric diarsine then can undergo further reactions involving R_2As - and R'_2As - moiety exchange (eqns. (2) and (3)).

 $2R_2AsAsR'_2 \rightleftharpoons R_2AsAsR_2 + R'_2AsAsR'_2$ (2)

$$R_2AsH + R_2AsAsR'_2 \rightleftharpoons R_2AsAsR_2 + R'_2AsH \quad (3)$$

The symmetrization process represented by eqn. (2) could not be studied directly due to the inability to isolate $R_2AsAsR'_2$. Thus, we have characterized this process by studying the $R_2AsAsR_2/R'_2AsAsR'_2$ systems (R = Me, R' = Et and Ph) [6, 17]. The reaction represented by eqn. (3) can be characterized by studying the corresponding R'_2AsH/R_2AsAsR_2 system. For example, the possibility of the reaction of Et_2AsH with $Me_2AsAsMe_2$ in the $Me_2AsH/$

 $Et_2AsAsEt_2$ system was established by independent study of the $Et_2AsH/Me_2AsAsMe_2$ system (see above results).

Due to the lability of the As-As and As-H bonds [1-3, 5, 6, 17], other reactions may also occur in the reaction mixture. For example, R₂AsH can be involved in H- moiety exchange with R'₂AsH. This exchange process has been established previously by independent study of the reaction of Me₂AsD with Et₂AsH in diethylether-d₁₀ [18].

This work has also been extended to some systems involving phosphorus analogues. The NMR spectra of an equimolar mixture of Me₂AsH and Et₂PPEt₂ showed no reaction from -80 to -10 °C. At 24 °C, the NMR spectra indicated the formation of Et₂PH and Me₂AsPEt₂. As the reaction progressed, a new peak due to Me₂AsAsMe₂ was observed. A disproportionate increase in the intensities of the Et₂PH peaks in comparison to those of Me₂AsPEt₂ was noted. After 18 days, the ¹H and ³¹P NMR data indicated an equilibrium with total consumption of Me₂AsPEt₂, and 27% Me₂AsAsMe₂.

These results suggest that Me_2AsH reacts with Et_2PPEt_2 to give Me_2AsPEt_2 and Et_2PH (eqn. (4)).

$$Me_2AsH + Et_2PPEt_2 \Longrightarrow Me_2AsPEt_2 + Et_2PH$$
 (4)

The phosphinoarsine, Me_2PAsEt_2 , then can react with Me_2AsH (eqn. (5)) and be involved in a self-exchange reaction (eqn. (6)).

$$Me_{2}AsH + Me_{2}AsPEt_{2} \iff Me_{2}AsAsMe_{2} + Et_{2}PH$$
(5)

$$2Me_2AsPEt_2 \rightleftharpoons Et_2PPEt_2 + Me_2AsAsMe_2$$
 (6)

The disproportionate formation of Et_2PH as compared to that of Me_2AsPEt_2 in the Me_2AsH/Et_2PPEt_2 system can be attributed to the occurrence of competitive reactions of Me_2AsH with Et_2PPEt_2 and Me_2AsPEt_2 . Reaction (5) should be favored over (4) since the P-As bond strength appears to be lower than the P-P bond strength [10, 11]. Reactions represented by eqns. (5) and (6) have been characterized by studying the $Et_2PH/Me_2AsAsMe_2$ and $Et_2PPEt_2/Me_2AsAsMe_2$ equilibrium systems (see discussion below) since Me_2AsPEt_2 cannot be isolated from solution [10, 11].

The NMR spectra of the $Et_2PH/Me_2AsAsMe_2$ system indicated no reaction from -80 to -10 °C. The reaction was then followed at 24 °C as a function of time. A slow reaction occurred to yield Me_2AsPEt_2 and Me_2AsH . The ¹H and ³¹P NMR spectra (21 h) showed the presence of 6% Me_2AsPEt_2 , 6% Me_2AsH , 44% Et_2PH , and 44% $Me_2AsAsMe_2$ at equilibrium.

The ³¹P NMR spectra of an equimolar mixture of Et_2PPEt_2 with $Me_2AsAsMe_2$ at 24 °C in toluene-d₈ indicated a very slow exchange reaction to give an

equilibrium mixture (13 days) of Me₂AsPEt₂, Et₂PPEt₂, and Me₂AsAsMe₂. An equilibrium constant of 0.22 was obtained from $K = [Me_2AsPEt_2]^2/$ ([Me₄As₂][Et₄P₂]). This value is consistent with those reported for the Ph₂PPPh₂/Ph₂AsAsPh₂ (0.37) [10] and Me₂PPMe₂/Me₂AsAsMe₂ (0.26) systems [11].

The results of our present study indicate that unsymmetric diarsines and phosphinoarsines are formed in the reactions of secondary arsines with symmetric diarsines and diphosphines, respectively. The overall reaction sequences are complex, since additional exchange reactions involving the R₂As-, R'_2As- , and R'_2P- species can be present. These competing reactions influence the rate of formation and relative yields of unsymmetric diarsines and phosphinoarsines. The fact that Me₂AsH readily reacts with Et₂AsAsEt₂ at -80 °C, while no reaction occurs upto -10 °C with Et₂PPEt₂ suggests that the As-As bond is more labile toward reaction with the As-H bond than with the P-P bond. The >AsH/>AsAs< and >AsH/>PP< systems are being studied further to determine the electronic and steric effects that various substituents have on the course of the reaction sequence.

Supplementary Material

¹H, ¹³C, and ³¹P NMR spectral data $[\delta, ppm]$ in toluene-d₈ solution at 24 °C were independently determined on synthesized compounds that were identified in the reaction mixtures. These data are available from the authors on request.

Acknowledgement

This research was supported in part by a UAB Faculty Research Grant (C.L.W.).

References

- 1 V. K. Gupta, L. K. Krannich and C. L. Watkins, *Inorg. Chim. Acta*, 126, 173 (1987).
- 2 V. K. Gupta, L. K. Krannich and C. L. Watkins, Inorg. Chim. Acta, 132, 163 (1987).
- 3 V. K. Gupta, L. K. Krannich and C. L. Watkins, *Inorg. Chem.*, 26, 1638 (1987).
- 4 V. K. Gupta, L. K. Krannich and C. L. Watkins, Synth. React. Inorg. Met-Org. Chem., 17, 501 (1987).
- 5 V. K. Gupta, L. K. Krannich and C. L. Watkins, *Inorg. Chem.*, 25, 2553 (1986).
- 6 V. K. Gupta, L. K. Krannich and C. L. Watkins, *Polyhedron*, 6, 1229 (1987).
- 7 R. G. Cavell and R. C. Dobbie, J. Chem. Soc. A, 1406 (1968).
- 8 R. L. Grant and A. B. Burg, J. Am. Chem. Soc., 84, 1834 (1962).
- 9 K. Issleib and K. Krech, Chem. Ber., 98, 1093 (1965).
- 10 A. Belforte, F. Calderazzo, A. Morvillo, G. Pelizzi and D. Vitali, *Inorg. Chem.*, 23, 1504 (1984).
- 11 A. J. Ashe, III and E. G. Ludwig, Jr., J. Organomet. Chem., 303, 197 (1986).
- 12 L. K. Krannich and H. H. Sisler, Inorg. Chem., 8, 1032 (1969).
- 13 W. M. Dehn and B. B. Wilcox, Am. Chem. J., 35, 1 (1906).
- 14 A. Tzschach and W. Lange, Z. Anorg. Allg. Chem., 326, 280 (1960).
- 15 E. Wiberg and K. Modritzer, Z. Naturforsch. Anorg. Chem., 126, 127 (1957).
- 16 K. Issleib and W. Seidel, Chem. Ber., 92, 2681 (1959).
- 17 V. K. Gupta, L. K. Krannich and C. L. Watkins, J. Organomet. Chem., submitted for publication.
- 18 W. R. Cullen and W. R. Leeder, Can. J. Chem., 48, 3757 (1970).